Dependency of the Spindle Assembly Checkpoint on Cdk1 Renders the Anaphase Transition Irreversible
نویسندگان
چکیده
Activation of anaphase-promoting complex/cyclosome (APC/C(Cdc20)) by Cdc20 is delayed by the spindle assembly checkpoint (SAC). When all kinetochores come under tension, the SAC is turned off and APC/C(Cdc20) degrades cyclin B and securin, which activates separase [1]. The latter then cleaves cohesin holding sister chromatids together [2]. Because cohesin cleavage also destroys the tension responsible for turning off the SAC, cells must possess a mechanism to prevent SAC reactivation during anaphase, which could be conferred by a dependence of the SAC on Cdk1 [3-5]. To test this, we analyzed mouse oocytes and embryos expressing nondegradable cyclin B together with a Cdk1-resistant form of separase. After biorientation and SAC inactivation, APC/C(Cdc20) activates separase but the resulting loss of (some) cohesion is accompanied by SAC reactivation and APC/C(Cdc20) inhibition, which aborts the process of further securin degradation. Cyclin B is therefore the only APC/C(Cdc20) substrate whose degradation at the onset of anaphase is necessary to prevent SAC reactivation. The mutual activation of tension sensitive SAC and Cdk1 creates a bistable system that ensures complete activation of separase and total downregulation of Cdk1 when all chromosomes have bioriented.
منابع مشابه
Cdk1 promotes kinetochore bi-orientation and regulates Cdc20 expression during recovery from spindle checkpoint arrest.
The spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance pathway, prevents chromosome segregation in response to conditions that disrupt the kinetochore-microtubule attachment. Removal of the checkpoint-activating stimulus initiates recovery during which spindle integrity is restored, kinetochores become bi-oriented, and cells initiate anaphase. Whether recovery ensues pa...
متن کاملThe Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity
The anaphase-promoting complex/cyclosome (APC/C) and the spindle assembly checkpoint (SAC), which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin-conjugating enzymes-UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial ...
متن کاملSlow Checkpoint Activation Kinetics as a Safety Device in Anaphase
Chromosome attachment to the mitotic spindle in early mitosis is guarded by an Aurora B kinase-dependent error correction mechanism [1, 2] and by the spindle assembly checkpoint (SAC), which delays cell-cycle progression in response to errors in chromosome attachment [3, 4]. The abrupt loss of sister chromatid cohesion at anaphase creates a type of chromosome attachment that in early mitosis wo...
متن کاملThe APC/C inhibitor XErp1/Emi2 is essential for Xenopus early embryonic divisions.
Mitotic divisions result from the oscillating activity of cyclin-dependent kinase 1 (Cdk1). Cdk1 activity is terminated by the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets cyclin B for destruction. In somatic divisions, the early mitotic inhibitor 1 (Emi1) and the spindle assembly checkpoint (SAC) regulate cell cycle progression by inhibiting the APC/C. Early em...
متن کاملCyclin B3 Is a Mitotic Cyclin that Promotes the Metaphase-Anaphase Transition
The timing mechanism for mitotic progression is still poorly understood. The spindle assembly checkpoint (SAC), whose reversal upon chromosome alignment is thought to time anaphase [1-3], is functional during the rapid mitotic cycles of the Drosophila embryo; but its genetic inactivation had no consequence on the timing of the early mitoses. Mitotic cyclins-Cyclin A, Cyclin B, and Cyclin B3-inf...
متن کامل